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A model of turbulent  diffusion of ae roso l s  in the a tmosphere  is proposed,  on whose basis  a 
Lagrange co r re l a t ion  function of  the cloud par t ic le  veloci ty  is constructed.  

Aerosol  propagat ion in the a tmosphere  has been examined repeatedly  in the l i t e ra tu re  [1-31. One of  
the bes t  known theor ies  is  that of Sutton [1]. Le t  us r eca l l  that in the "case of homogeneous turbulence,  the 
r o o t - m e a n - s q u a r e  displacement  of ae roso l  cloud par t i c les  along the y axis up to the t ime t,  say,  can be ex -  
p r e s s e d  in t e r m s  of the normal ized  Lagrange cor re la t ion  function of the par t ic le  veloci ty  RL(~ ) [4]: 

t t" 

cr~ (t) =:= 2 (v'u--)-'2 .i dr' .t ~ Rt. (~) d~. (1) 

Here  (v~) 2 is the y-component  of the par t ic le  veloci ty fluctuations, and the vec tor  of the mean  wind veloci ty 
is  d i rec ted  along the x axis .  Sutton proposed use of  the following function 

Rz (~) == 1 ',- , (2) 

where  0 < n r 1, r = v/(Uy-~, v is  the moleeu la rv i seos i ty .  There  is thenobtained fo r  4 ( t )  

tr~ (t) 1 ~ ~ -  c,~(,~)~-,,, (3) 

where  

_ 1 ' -~  
C~ = 4vn " ~ " 

( t - -  n) (2 - -  n) u '~ ,  u ~ ] 
(4) 

is the gene ra l i zed  turbulent  diffusion coefficient .  In l a t e r  papers ,  Sutton introduced the concept  of m a c r o -  
v i scos i ty  to rep lace  the molecu la r  v iscosi ty .  Analogous express ions  can also be wr i t ten  for  Oez , C~z. The 
p a r a m e t e r  n is de te rmined  empir ica l ly .  Moreover ,  Sutton uses  other  values  of Cy obtained exper imenta l ly  
and not f rom (4), in the examples  ci ted,  where  the expe r imen ta l  Cy diminishes with altitude. 

A discussion of the advantages and disadvantages of the Sutton formulas  in the l i t e r a tu re  [5, 6] indi-  
cates  that they a re  substantial ly empi r ica l  and without theore t ica l  foundation, although the Sutton model  
was used extensively  in p rac t i ce ,  p a r t i c u l a r l y  in England and the USA. 

Le t  us show that the model  we propose for propagat ion of an aerosol  cloud in the a tmosphere  affords 
the possibi l i ty  of giving a foundation to that co r re l a t ion  function RL(~ ) which can take on the Sutton form 
under  specif ic  conditions,  while the p a r a m e t e r s  n and Cy a re  in te rpre ted  within the f r amework  of our  

model .  

Le t  us cons ider  the  behavior  of a dense aeroso l  cloud in a turbulent  a tmosphere ,  whose dynamic 
s ta te  is cha rac t e r i zed  by the turbulent  v iscos i ty  coeff icient  K. In the case  of a high par t ic le  concen t ra -  
tion in the cloud, the mutual in teract ion forces  a re  so substantial  t h a t t h e  cloud initially behaves as a 
single whole moving a t  the mean veloci ty  of the wind. Let  us assume that  the cloud s t a r t s  to be broken 
up into separa te  , f ragrnents , "  puffs, under  the influence of a tmospher ic  turbulence and that the radial  d i s -  
t r ibut ion of such puffs (we assume them spher ica l  for simplicity) is log-normal .  Kolmogorov [71 proved 
the applicabil i ty of this dis tr ibut ion to random breakdown p ro ces se s .  
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Each puff moves as  a whole, subject to further  breakdown as it moves.  The cloud center  of mass  
continues to move at the mean wind velocity u. Let  R 0 denote the greates t  of the probable dimensions of 
the puffs being formed.  This quantity should evidently be r e l a t ed  to some actual cha rac te r i s t i c s  of the 
state of the a tmosphere .  For  example,  as we have conceived, it should cor respond to the dimensions of 
the grea tes t  of the a tmospher ic  vor t ices  taking par t  in destruct ion of the cloud. Each par t ic le  moves at 
the veloci ty of the puff to which it belongs at the given time. The density pp of all the puffs is constant. 
The log-normal  distr ibution is wri t ten as [7] 

' ~ (x--At~ * 
w (x, t) dx = 1 I _  e - ~'*  dx, (5) 

. , V'2ntB 
where x = InR/R0, At = x, B2t = (x-x) 2, R < R 0, A < 0. Let us assume that the atmospheric vortices jolt 
the puffs which have been formed (and are contiuuously being formed) exactlyas molecules jolt Brownian parti- 
cles and just as a Brownian particle is in thermal equilibrium with the molecules of the medium, each puff 
is in equilibrium with the atmospheric vortices, i.e., (v') 2 = (u') 2. 

Let us write the equation of motion of a puff of radius R and mass m along the y axis as follows: 

dv 
m - -  = a v ( t )  + f ( t) ,  ( 6 )  

d t  

where v is the veloci ty of a f ragment ,  f(t) is a random force act ing on the puff from the a tmospher ic  v o r -  
t ices ,  and a = 6 ~RKpair.  Since m =-(4/3)vR3pp (Pair is the a i r  density), then 

dv 
= - -  a (R) v (t)~+ b (R, t), (7) 

d t  
where - " -: . . . . . . . . . . . .  

9 K Pair l 3 " | ,,(,,e) = y . . ~  R- ~ ,  b(,~. t)= ,C~i ; -~-f(r (s) 

It  is neces sa ry  to t rack  some isolated cloud par t ic le  belonging to fragments  of smal le r  and smal le r  s ize 
at  success ive  t imes in conformity with the mechanism of cloud fragmentation.  The equation of motion of 
such a par t ic le  is therefore  descr ibed also by (7), but with radius R dependent on t ime in a random way. 
For  s implici ty ,  let us a s sume  that the pa ramete r s  A and B of the distribution (5) are  such that 

B 2 << A2t .  (9) 

Then the equation of motion of any cloud particle is written as 

d o  = -a (R ,  t) v (t) + b ( R ,  t ) ,  (10) 
d t  

where 

a(R, t) 9 Pa{r K _  e__2~ ' (11) 
2 ~p R~ 

t)= j(,)#e-3A,. (12) 
4n~,p ~o 

Using the notation -2A ~ k, (9/2)K(p~r/Pp)i/R~) ~ p aml noting that (3f41rpp) (I/R~)e -'~At = i/m R, let us 

write (i0) with the initial con~tion v(0) = 0. 

p ~ eks 

j ~zR(s) ds. (13) 
0 

Let us find the correlation function v'(t)v' (t') where the bar denotes the time average: 

p t t" p 

, .m" (s) m" (s') ds'ds. (14) 
0 O 

Most important  here  is the c o r r e c t  se lec t ion  of the corre la t ion  function of the random forces  f(s)f(s'). In 
the theory of Brownian motion f(s)f(s') = 2~m(v ' )25 ( s - s ' ) ,  where ~ is the fr ict ion coefficient and m is the 
mass  of the Brownian par t ic le .  Let  us const ruct  our f(s)f(s') by analogy with the Brownian motion. It  is 
seen from (10) that the role  of the fr ict ion coefficient in our case is played by aR(t)mR(t), where the bar  
with subscr ip t  R denotes averaging with respec t  to R. Then 
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Let e kt' = n. 

Therefore  

v ' ( t )v ' ( t ' )  = (v ' )*e [e T - - e  k 1. 

The second number in the square brackets in (15) can be neglected if 

e ~-  ("-' >> 1. 

Using the notation t - t '  ---- ~ and dividing by (vt-~, we obtain 

v' (t) v' (t') - e  {~,k(~+t,~_:t,~ 
(t,')" 

Hence, for all ~ << 1 / k  and ~ << 1 / p  

(15) 

(16) 

(17) 

(18) 

where T = 1 / p .  If the time domain near t' << 1 / k  is integrated, then n is a number not much greater  than 
one which var ies  slightly with time. Taking into account that 1/peqaals  (2/9)(R~/K)pp/Pair and is the order  
of magnitude of the Lagrange scale of turbulence, as also taking account of (16), the deduction can be made 
that the Sutton correlat ion function obtained is valid for times less than the Lagrange scale of turbulence. 

Let  us compute the root-mean-square displacement of a cloud particle by means of (1) by using the 
"exact" correlat ion function (18) and the equality (v') 2 = (u')Z: 

2 " - "  T._ I  ts_. (20)  
(Y~ (t) = (u~)' �9 3 - -  n 

According to (3) the generalized coefficient of turbulent diffusion Cy is determined from the relationship 

(21) 

(22) 

o~ (t) = - ~  (~t) ~ , 

Therefore ,  Cy will equal 

~3-.  3 - - n  u s-"  3 - - n  
4 ( ppt"-  

9K " 

where 7 = 3 - n  as follows from (20). 

c,=l/ 
A computation of Cy by means of (22) by using experimental values  for R 0 and K from [8] shows that Cy 
diminishes with altitude for the altitude range to 250 m. 
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NOTATION 

is the Lagrange correlat ion funct~ion of the particle velocity; 
is the particle velocity; 
is the fluctuation in the particle velocity; 
is the root-mean-square  particle displacement; 
is the molecular  viscosity of the medium; 
is the turbulent viscosity; 
is the generalized coefficient of turbulent diffusion; 
are  the parameters  of the log-normal distribution; 
is the fragment radius; 
is the dimension of the atmospheric vort ices;  
is the mean wind velocity; 
is the fluctuation in the wind velocity. 
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